Del glioma intrínseco difuso de protuberancia al glioma difuso de línea media H3K27M-alterado: ¿cuál ha sido el papel de la biopsia estereotáctica?

Palabras clave: Biopsia estereotáxica, Glioma pontino intrínseco difuso, Glioma difuso de línea media H3K27M-alterada, H3K27M

Resumen

Introducción: la biopsia estereotáxica en el tumor difuso de protuberancia ha demostrado ser una técnica factible, con alta rentabilidad diagnóstica y baja morbilidad neurológica. Además, ha abierto las puertas a nuevos enfoques terapéuticos basados en la medicina individualizada y los ensayos clínicos, en una enfermedad en la que, actualmente, no existe tratamiento curativo y cuya supervivencia es completamente infausta. Sin embargo, durante años, el papel de este procedimiento quirúrgico en el manejo diagnóstico y terapéutico del paciente pediátrico con glioma pontino intrínseco difuso (GPID) ha sido cuestionado y controvertido.

Objetivos: realizar una revisión histórica sobre la percepción quirúrgica e indicación de la biopsia estereotáctica en el GPID, así como su contribución al conocimiento y comprensión de su compleja biología molecular y, consecuentemente, su repercusión en las nuevas terapias.

Material y métodos: se describen las características generales y de diagnóstico habitual del GPID. Posteriormente, se analizan las limitaciones y consecuencias del diagnóstico clásico, así como su repercusión en el tratamiento de este tipo de tumor.

Resultados: se realiza una viñeta histórica sobre el rol de la biopsia estereotáctica en los tumores de tronco y, en particular, en el GPID, junto con su repercusión en el conocimiento, su biología molecular y avances terapéuticos.

Conclusiones: la biopsia estereotáctica en el tumor difuso de protuberancia es un procedimiento factible con una baja morbi-mortalidad y alta rentabilidad diagnóstica: se aconseja llevarla a cabo en centros médicos experimentados de referencia en neuro-oncología pediátrica.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Recinos PF, Sciubba DM, Jallo GI. Brainstem tumors: where are we today? Pediatr Neurosurg. 2007;43:192–01. Disponible en:
https://pubmed.ncbi.nlm.nih.gov/17409788/
doi: 10.1159/000098831

2. Klimo P Jr, Pai AP, Thompson CJ, Boop FD, Qaddoumi I, Gajjar A, et al. Management and outcome of focal low-grade brainstem tumors in pediatric patients: the St. Jude experience. JNeurosurg Pediatrics. 2013 Mar;11(13):274-81.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/23289916/
doi: 10.3171/2012.11.PEDS12317

3. Littman P, Jarrett P, Bilaniuk LT, Rorke LB, Zimmerman RA, Bruce DA, et al. Pediatric brain stem gliomas. Cancer. 1980;45:2787–92.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/7379009/
doi: 10.1002/1097-0142(19800601)45:11<2787::aid-cncr2820451113>3.0.co;2-v

4. Berger MS, Edwards MS, LaMasters D, Davis RL, Wilson CB. Pediatric brain stem tumors: radiographic, pathological, and clinical correlations. Neurosurgery. 1983;12(3):298-92.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/6302553/
doi: 10.1227/00006123-198303000-00008

5. Stroink AR, Hoffman HJ, Hendrick EB, Humphreys RP. Diagnosis and management of pediatric brain-stem gliomas. J Neurosurg. 1986;65(6):745-50.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/3772471/
doi: 10.3171/jns.1986.65.6.0745

6. Matson D. Tumors of the posterior fossa. En: Thomas C (ed): Neurosurgery of Infancy and Childhood. Springfield: Thomas; 1969. p. 469-77.

7. Alvisi C. Considerazioni sul trattamento chirurgico dei gliomi bulbo-pontini. Min Neurochir. 1962;6:5-7.

8. Alvisi C, Cerisoli M, Maccheroni ME. Long-term results of surgically treated brainstem gliomas. Acta Neurochir (Wien). 1985;76:12-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/4003123/
doi: 10.1007/BF01403823.

9. Olivecrona H. Handbuch der Neurochirurgie. Berlin Heidelberg: Springer; 1967.

10. Pool JL. Gliomas in the region of the brain stem. J Neuro Surg. 1968;29:164-67.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/5673314/
doi: 10.3171/jns.1968.29.2.0164.

11. Epstein F, McCleary EL. Intrinsic brainstem tumors of childhood: surgical indications. J Neurosurg. 1986;64(1):11–5.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/3941334/
doi: 10.3171/jns.1986.64.1.0011

12. Stroink AR, Hoffman HJ, Hendrick EB, Humphreys RP, Davidson G. Transependymal benign dorsally exophytic brain stem gliomas in childhood: diagnosis and treatment recommendations. Neurosurgery. 1987;20(3):439–44.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/3574621/
doi: 10.1227/00006123-198703000-00014

13. Barkovich AJ, Krischer J, Kun LE, Packer R, Zimmerman RA, Freeman CR, et al. Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg. 1990;16(2):73–3.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/2132928/
doi: 10.1159/000120511

14. Fischbein NJ, Prados MD, Wara W, Russo C, Edwards MS, Barkovich AJ. Radiologic classification of brain stem tumors: correlation of magnetic resonance imaging appearance with clinical outcome. Pediatr Neurosurg. 1996;24 (1):9–23.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/8817611/
doi: 0.1159/000121010

15. Choux M, Lena G, Do L. Brainstem tumors. En: Choux M, Di Rocco C, Hockley A (eds): Pediatric Neurosurgery. New York: Churchill Livingstone; 2000. p. 471–91.

16. Guillamo J, Doz F, Delattre J. Brainstem Gliomas. Curr opin Neurolog. 2001;14:711-15.
Disponible en:
https://journals.lww.com/coneurology/Abstract/2001/12000/Brain_stem_gliomas.6.aspx
doi: 10.1016/B978-0-444-53502-3.00010-0

17. Sousa, P, Hinojosa J, Muñoz, M. Esparza J, Muñoz A. Gliomas del tronco encefálico. Neurocirugía. 2004;15:56-6.
Disponible en:
https://www.sciencedirect.com/science/article/abs/pii/S1130147304705023
doi: 10.1016/S1130-1473(04)70502-3

18. Hargrave D, Bartels, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7(3):241-48.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/16510333
doi: 10.1016/S1470-2045(06)70615-5

19. Damodharan S, Lara-Velazquez M, Williamsen BC, Helgarger J, Dey M. Diffuse intrinsic pontine glioma: molecular landscape, evolving treatment strategies and emerging clinical trials. J. Pers. Med. 2022;12(5): 840. Disponible en: https://www.mdpi.com/2075-4426/12/5/840
doi:10.3390/jpm12050840

20. Jansen MHA, Vuurden DG, Vanderop WP, Kaspers GJL. Diffuse intrinsic pontine gliomas: A systematic update on clinical trials and biology. Cancer Treat Rev. 2012;38(1):27-5.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/21764221/
doi: 10.1016/j.ctrv.2011.06.007

21. Johung TB, Monje M. Diffuse intrinsic pontine glioma: new pathophysiological insights and emerging therapeutic targets. Curr Neuropharmacol. 2017;15(1):88-7.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/27157264/
doi: 10.2174/1570159x14666160509123229

22. Zhang P, Duan Y, Gu G, Qu L, Xiao D, Xi T, et al. Clinical, pathological, and radiological features of 80 pediatric diffuse intrinsic pontine gliomas: A single-institute study. Fron Oncol. 2023;13:1007393.
Disponible en:
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1007393/full
doi: 10.3389/fonc.2023.1007393

23. Dalle C, Coleman C, Gupta N, Mueller S. Advances and Clinical Trials Update in the Treatment of Diffuse Intrinsic Pontine Gliomas. Pediatr Neurosurg. 2023; 13:1-8.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/36642062/
doi: 10.1159/000529099

24. Epstein F, Wissof JH. Intrinsic brainstem tumors in childhood: Surgical indications. J Neurooncol. 1988;6(4):309-17.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/3221258/
doi: 10.1007/BF00177425

25. Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, et al. A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res. 2010;16:3368–77.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/20570930/
doi:10.1158/1078-0432.CCR-10-0438

26. Qu HQ, Jacob K, Fatet S, Ge B, Barnett D, Delattre O, et al. Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chro- mosomal imbalances in pediatric glioblastomas. Neuro Oncol. 2010;12(2):153–63.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/20150382/
doi:10.1093/neuonc/nop001

27. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011; 29(30):3999–06.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209696/
doi:10.1200/JCO.2011.35.5677

28. Schroeder KM, Hoeman CM, Becher OJ. Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res. 2014;75(1-2):205-09.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/24192697/
doi: 10.1038/pr.2013.194

29. Cohen KJ, Heideman RL, Zhou T, Holmes EJ, Lavevy RS, Bouffet E, et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's Oncology Group. Neuro Oncol. 2011;13(4):410-416.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/21345842/
doi: 10.1093/neuonc/noq205

30. Cohen KJ, Broniscer A, Glod J. Pediatric glial tumors. Curr. Treat. Options Oncol. 2001;2(6): 529–36.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/12057098/
doi: 10.1007/s11864-001-0074-9

31. Langmoen A, Lundar T, Storm-Mathisen I, Lie SO, Hovind KL. Management of pediatric pontine gliomas. Childs Nerv Syst. 1991;7(1):13-5.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/2054800/
doi: 10.1007/BF00263825

32. Packer RJ, Allen JC, Goldwein JL, Newall J, Zimmerman RA, Priest J, et al. Hyperfractionated radiotherapy for children with brainstem gliomas: a pilot study using 7,200 cGy. Ann Neurol. 1990;27(2): 167-73.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/2317012/
doi: 10.1002/ana.410270212

33. Freeman CR, Krischer JP, Sanford RA, Cohen ME, Burger PC, del Carpio R, et al. Final results of a study of escalating doses of hyperfractionated radiotherapy in brain stem tumors in children: a Pediatric Oncology Group study. Int J Radiat Oncol Biol Phys. 1993;27(2):197-06.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/8407392/
doi: 10.1016/0360-3016(93)90228-n

34. Packer RJ, Zimmerman RA, Kaplan A, Wara WM, Rorke LB, Selch M, et al. Early cystic/necrotic changes after hyperfractionated radiation therapy in children with brain stem gliomas. Cancer 1993;71(8):2666-74. Disponible en: https://pubmed.ncbi.nlm.nih.gov/8453590/
doi: 10.1002/1097-0142(19930415)71:8<2666::aid-cncr2820710836>3.0.co;2-k

35. Mandell LR, Kadota R, Freeman C, Douglass EC, Fontanesi J, Cohen ME, et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys. 1999;43(5):959-64.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/10192340/
doi: 10.1016/s0360-3016(98)00501-x

36. Negretti L, Bouchireb K, Levy-Piedbois C, Habrand, JL, Dhermain F, Kalifa C, et al. Hypofractionated radiotherapy in the treatment of diffuse intrinsic pontine glioma in children: a single institutions experience. J Neurooncol. 2011;104(3): 773-77.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/21327862/
doi: 10.1007/s11060-011-0542-4

37. Zaghloul MS, Eldebawy E, Ahmed S, Mousa AG, Amin A, Refaat A, et al. Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiother Oncol. 2014;111(1):35-0.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/24560760/
doi: 10.1016/j.radonc.2014.01.013

38. Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New developments in the pathogenesis, therapeutic targeting, and treatment of h3k27m-mutant diffuse midline glioma. Cancers (Basel). 2021;13(21):5280.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/34771443/
doi: 10.3390/cancers13215280

39. Grimm SA, Chamberlain MC. Brainstem glioma: A review. Curr Neurol Neurosci Rep. 2013;13:346.
Disponible en:
https://link-springer-com.m-hdoct.a17.csinet.es/article/10.1007/s11910-013-0346-3
doi: 10.1007/s11910-013-0346-3

40. Conway LW. Stereotaxic diagnosis and treatment of intracranial tumors including an initial experience with cryosurgery for pinealomas. J Neurosurg. 1973;38(4):453-60.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/4348746/
doi: 10.3171/jns.1973.38.4.0453

41. Gleason CA, Wise BL, Feinstein B. Stereotactic localization (with computerized tomographic scanning), biopsy, and radiofre- quency treatment of deep brain lesions. Neurosurgery. 1978;2:217–22.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/215935/
doi: 10.1227/00006123-197805000-00006

42. Coffey RJ, Lunsford D. Stereotactic surgery for mass llesions of the midbrain and pons. Neurosurgery. 1985;17(1):12-8.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/3895028/
doi: 10.1227/00006123-198507000-00003.

43. Franzini A, Allegranza A, Melcarne A, Giorgi C, Ferraresi S, Broggi S. Serial stereotactic biopsy of brain stem expanding lesions. Considerations on 45 consecutive cases. Acta Neurochir Suppl (Wien). 1988;42:170-76. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3055827/
doi: 10.1007/978-3-7091-8975-7_34.

44. Giunta F, Marini G, Grasso G, Zorzi. Brain stem expansive lesions: stereotactic biopsy for a better therapeutic approach. Acta Neurochir Suppl (Wien). 1988; 42:182-86.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/3055829/
doi: 10.1007/978-3-7091-8975-7_36

45. Frank F, Fabrizi P, Frank-Ricci R, Gaist G, Sédan R, Peragut JC. Stereotactic Biopsy and Treatment of Brain Stem Lesions: Combined Study of 33 Cases (Bologna - Marseille). Acta Neurochir Suppl (Wien). 1988; 42: 177-81.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/3055828/
doi: 10.1007/978-3-7091-8975-7_35

46. Giunta F, Grasso G, Marini G, Zorzi F. Brain stem expanding lesions: stereotactic diagnosis and therapeutical approach. Acta Neurochir Suppl (Wien). 1989;46:86-9.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/2672719/
doi: 10.1007/978-3-7091-9029-6_21

47. Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, Hammond GD. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery. 1993;33(6):1026–30.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/8133987/
doi: 10.1227/00006123-199312000-00010

48. Puget S, Beccaria K, Blauwblomme T, Roujeau T, James S, Grill J, Zerah M, Varlet P, Sainte-Rose C. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv Syst. 2015;31(10):1773–80. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26351229/
doi: 10.1007/s00381-015-2832-1

49. Hankinson TC, Campagna EJ, Foreman NK, Handler MH. Interpretation of magnetic resonance images in diffuse intrinsic pontine glioma: a survey of pediatric neurosurgeons. J Neurosurg Pediatr. 2011;8(1):97–02. Disponible en:
https://thejns-org.m-hdoct.a17.csinet.es/pediatrics/view/journals/j-neurosurg-pediatr/8/1/article-p97.xml
doi:10.3171/2011.4.PEDS1180

50. Sufit A, Donson AM, Birks DK, Knipstein JA, Fenton LZ, Jedlicka P, Hakinson TC, Manejador MH, Capataz NK. Diffuse intrinsic pontine tumors: a study of primitive neuroectodermal tumors versus the more common diffuse intrinsic pontine gliomas. J Neurosurg Pediatr. 2012;10(2):81–8.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/22747092/
doi:10.3171/2012.3.PEDS11316

51. Samadani U, Judy KD. Stereotactic brainstem biopsy is indicated for the diagnosis of a vast array of brainstem pathology. Stereotact Funct Neurosurg. 2003;81(1-4):5–9.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/14742957/
doi:10.1159/000075097

52. Pincus DW, Richter EO, Yachnis AT, Bennet J, Bhatti MT, Smith Y. Brainstem ste- reotactic biopsy sampling in children. J Neurosurg. 2006;104(2 Suppl):108–14.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/16506498/
doi:10.3171/ped.2006.104.2.108

53. Rajshekhar V, Moorthy RK. Status of stereotactic biopsy in children with brain stem masses: insights from a series of 106 patients. Stereotact Funct Neurosurg. 2010;88(6):360–66.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/20861659/
doi:10.1159/ 000319044

54. McGirt MJ, Woodworth GF, Coon AL, Frazier JM, Amundson E, Garonzik I, Olivi A, Weingart JD Independent predictors of morbidity after image-guided stereotactic brain biopsy: a risk assessment of 270 cases. J Neurosurg. 2005;102 (5): 897–01.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/15926716/
doi: 10.3171/jns.2005.102.5.0897

55. Hamisch C, Kickingereder P, Fischer M, Simon T, Ruge MI. Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: A systematic review and meta-analysis of 735 cases. J. Neurosurg Pediatr. 2017;20(3):261–68.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/28621573/
doi: 10.3171/2017.2.PEDS1665

56. Cage TA, Samagh SP, Mueller S, Nicolaides T, Haas-Kogan D, Prados M, Banerjee A, Auguste KI, Gupta N. Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Childs Nerv Syst. 2013;29(8):1313–19.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/23666401/
doi: 10.1007/s00381-013-2101-0

57. Wang ZJ, Rao L, Bhambhani K, Miller, Poulik J, Altinok D, Sood S. Diffuse intrinsic pontine glioma biopsy: A single institution experience. Pediatr Blood Cancer. 2015;62(1):163–65.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/25263768/
doi: 10.1002/pbc.25224

58. Carai A, Mastronuzzi A, Benedictis A, Messina R, Cacchione A, Miele E, et al. Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: A single-center experience. World Neurosurg. 2017;101:584-88. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28254596/
doi: 10.1016/j.wneu.2017.02

59. Dawes W, Marcus HJ, Tisdall M, Aquilina K. Robot-assisted stereotactic brainstem biopsy in children: prospective cohort study. J Robot Surg. 2019;13(4):575-79.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/30523502/
doi: 10.1007/s11701-018-0899-x

60. Gupta N, Goumnerova C, Manley P, Chi SN, Neuberg D, Puligandla M, et al. Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro Oncol. 2018;20(11):1547-55.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/29741745/
doi: 10.1093/neuonc/noy070

61. Pfaff E, Damaty AE, Prakash G, Blattner-Johnson M, Worst BC, Stark S, et al. Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. EJC. 2019;114:27-5.
Disponible en: https://www.ejcancer.com/article/S0959-8049(19)30220-5/fulltext
doi: 10.1016/j.ejca.2019.03.019

62. Langmoen IA, Lundar T, Storm-Mathisen I, Lie SO, Hovind KH. Management of pediatric pontine gliomas. Childs Nerv Syst. 1991;7(1),13–15.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/2054800/
doi: 10.1007/BF00263825

63. Williams JR, Young CC, Vitanza NA, McGrath M, Feroze AH, Browd SR, Hauptman JS. Progress in diffuse intrinsic pontine glioma: Advocating for stereotactic biopsy in the standard of care. Neurosurg Focus. 2020;48(1):E4.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/31896081/
doi: 10.3171/2019.9.FOCUS19745

64. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an importan prognostic biomarker in gliomas. J Clin Oncol. 2009;27(25):4150-54.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/19636000/
doi: 10.1200/JCO.2009.21.9832

65. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. Genomic 2950 analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(6):451–56.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/24705254/
doi:10.1038/ng.2936

66. Hoffman LM, Veldhuijzen van Zanten SEM, Colditz N, Baugh J, Chaney B, Hoffmann M, et al. Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. J Clin Oncol. 2018;36(19):1963–72.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/29746225/
doi: 10.1200/JCO.2017.75.9308

67. Angelini P, Hawkins C, Laperriere N, Bouffet E, Bartels U. Post mortem examinations in diffuse intrinsic pontine glioma: Challenges and chances. J Neurooncol. 2011;101:75–1.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/20473723/
doi: 10.1007/s11060-010-0224-7

68. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz M, Zhang J, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28(18):3061-68. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20479398/
doi: 10.1200/JCO.2009.26.7252

69. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, et al: K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012; 124 3):439–47.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/22661320/
doi: 10.1007/s00401-012-0998-0

70. Schwartzentruber J, Korshunov A, Liu XY, Jones DTW, Pfaff E, Jacob K, et al: Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/22286061/
doi: 10.1038/nature10833

71. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al: Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44:251–53. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22286216/
doi: 10.1038/ng.1102

72. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, et al. Inhibition of PRC2 activity by a gain- of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340 (6134): 857–61.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/23539183/
doi: 10.1126/science.1232245

73. Gessi M, Gielen GH, Dreschmann V, Waha A, Pietsch T. High frequency of H3F3AK27M mutations characterizes pediatric and adult high‐grade gliomas of the spinal cord. Acta Neuropathol. 2015;130(3):435-37. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26231952/
doi: 10.1007/s00401-015-1463-7

74. Shankar GM, Lelic N, Gill CM, Thorner AR, Hummelen PV, Wissoff JH, et al. BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol. 2016;131(1):147-50.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/26487540/
doi: 10.1007/s00401-015-1492-2

75. Louis DN, Perry A, Reifenberger G, Deimlin A, Figarella D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-20.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/27157931/
doi: 10.1007/s00401-016-1545-1

76. Elsaesser SJ, Goldberg AD, Allis CD. New functions for an old variant: no substitute for histone H3.3. Curr Opin Genet Dev. 2010;20(2):110-17. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20153629/
doi: 10.1016/j.gde.2010.01.003

77. Buehl CJ, Kuo MH. Critical roles of Shugoshin and histones as tension sensors during mitosis. Curr Genet. 2018;64(6):1215-19.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/29796904/
doi: 10.1007/s00294-018-0846-4

78. Karremann M, Gielen GH, Hoffmann M, Wiese M, Colditz N, Warmuth-Metz M, et al. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro Oncol. 2018;20:123–31.
Disponible en:
https://academic.oup.com/neuro-oncology/article/20/1/123/4064721
doi: 10.1093/neuonc/nox149

79. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor K.R, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32(4):520–37. Disponible en:
https://pubmed.ncbi.nlm.nih.gov/28966033/
doi: 10.1016/j.ccell.2017.08.017

80. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N,Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130(6):815–27.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/26399631/
doi: 10.1007/s00401-015-1478-0

81. Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, eHuang A, t al., Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (adp-ribose) polymerase as potential therapeutic targets. J Clin Oncol .2010;28(8):1337-44.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/20142589/
doi: 10.1200/JCO.2009.25.5463

82. Puget S, Philippe C, Bax DA, Job B, Varlet P, Junier MP, et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One. 2012;7:e30313.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289615/
doi: 10.1371/journal.pone.0030313

83. Gilbertson RJ, Hill DA, Hernan R, Kocak M, Geyer R, Olson J, et al. ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res. 2003;9(10 Pt 1):3620-24. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14506149/

84. Taylor KR, Vinci M, Bullock AN, Jones C. ACVR1 mutations in DIPG: Lessons learned from FOP. Cancer Res. 2014;74(17):4565–70. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25136070/
doi: 10.1158/0008-5472.CAN-14-1298

85. Hoeman CM, Cordero FJ, Hu G, Misuraca K, Romero MM, Cardona HJ, et al. ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nat Commun. 2019;10(1):1023. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30833574/
doi: 10.1038/s41467-019-08823-9

86. Carvalho D, Taylor KR, Olaciregui NG, Molinari V, Clarke M, Mackay A, et al. ALK2 inhibitors display beneficial effects in preclinical models of ACRV1 mutant diffuse intrinsic pontine glioma. Commun Biol. 2019;2:156. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509210/ doi: 10.1038/s42003-019-0420-8

87. Werbrouck C, Evangelista CCS, Lobón-Iglesias MJ, Barret E, Le Teuff G, Merlevede J, et al. TP53 Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clin Cancer Res. 2019;25:6788–00.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/31481512/
doi: 10.1158/1078-0432.CCR-19-0126

88. Saratsis AM, Kambhampati M, Snyder K, Yadavilli S, Devaney JM, Harmon B, et al. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol. 2014;127(6):881–95.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/24297113/
doi: 10.1007/s00401-013-1218-2

89. Meel MH, Schaper SA, Kaspers GJL, Hulleman E. Signaling pathways and mesenchymal transition in pediatric high-grade glioma. Cell Mol Life Sci. 2018; 75(5):871–87.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809527/
doi: 10.1007/s00018-017-2714-7

90. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset P, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high- grade astrocytoma. Nat Genet. 2014;46(5) 462–66. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282994/
doi:10.1038/ng.2950

91. Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B, et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group a (PFA) ependymomas. Acta Neuropathol (Berl). 2018;136(2):211–26.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/29909548/
doi: 10.1007/s00401- 018-1877-0

92. Castel D, Kergrohen T, Tauziède-Espariat A, Mackay A, Ghermaoui S, Lechapt E, et al. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3-K27M mutation. Acta Neuropathol (Berl). 2020;139(6):1109–13. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32193787/
doi: 10.1007/s00401-020- 02142-w

93. Mondal G, Lee JC, Ravindranathan A, Villanueva-Meyer JE, Tran QT, Allen SJ, et al. Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol (Berl). 2020;139:1071–88.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/32303840/
doi: 10.1007/ s00401-020-02155-5

94. Sievers P, Sill M, Schrimpf D, Stichel D, Reuss DE, SturmD, etal. Asubsetof pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro Oncol. 2021;23:34–3.
Disponible en: https://pubmed.ncbi.nlm.nih.gov/33130881/
doi: 10.1093/neuonc/noaa251

95. Gabriele S, Bertero L, Morana G, Sciortino P, Bertin D, Mussano A, et al. Pediatric diffuse midline glioma H3K27- altered: A complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol. 2023;12:1082062.
Disponible en: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.1082062/full
doi: 10.3389/fonc.2022.1082062

96. Grill J, Le Teuff G, Nysom K, Blomgren K, Hargrave D, McCowage G, Bautista F, Van Vuurden D, Dangouloff-Ros V, Puget S, Varlet P, Debily MA, Vassal G, Le Deley MC. Biological Medicine for Diffuse Intrinsic Pontine Gliomas Eradication (BIOMEDE): Results of the three-arm biomarker-driven randomized trial in the first 230 patients from Europe and Australia. Neuro Oncol. 2019; 21 (Supple 6):vi183.
Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6847455/
doi:10.1093/neuonc/noz175.765
Publicado
2024-09-01
Cómo citar
[1]
RANC, R.A. de N., Becerra Castro, M.V., Alamar Abril, M., Culebras Palau, D., Candela Cantó, S., Morales La Madrid, A. y Hinojosa Mena-Bernal, J. 2024. Del glioma intrínseco difuso de protuberancia al glioma difuso de línea media H3K27M-alterado: ¿cuál ha sido el papel de la biopsia estereotáctica?. Revista Argentina de Neurocirugía. 38, 03 (sep. 2024). DOI:https://doi.org/10.59156/revista.v38i03.657.